1.2.4 The micro canonical ensemble
Take an isolated classical system characterized by
positions demonstra:
$$\Psi = \{q_{1,1}, -, q_{N}, p_{1,1}, -, p_{N}\}$$
 and a time
independent Hamiltanian $H(q_{1,1}, -, q_{N}, p_{1,1}, -, p_{N})$.
Dynamics Trajectoris $q_{i}(t), p_{i}(t)$ and solutions of
 $\frac{1}{dt} = q_{i}(t) = q_{i}(t) = \frac{\partial H}{\partial p_{i}} = \partial p_{i}H$; $p_{i} = -\frac{\partial H}{\partial q_{i}}$
 $H(q_{1}(t), -, q_{N}(t), p_{1}(t), -, p_{N}(t))$ is a constant of motion:
Chaim rule:
 $\frac{1}{dt} H(\tilde{q}(t), \tilde{q}(t)) = \frac{\partial H}{\partial t} + \sum_{i} \frac{\partial H}{\partial q_{i}} + \frac{\partial H}{\partial p_{i}} = \sum_{i} \partial q_{i}H \times \partial p_{i}H + \partial p_{i}H(-\partial q_{i}H) = 0$
The dynamics of the system takes place along the energy surface.
 $\frac{H(concanonical hypothesis: For a classical complex system, the
energy surface is right duriformly be engodically = 0 all
configurations with the same energy cut visited with equal
probability.
 $\frac{Discute system}{Q}$ Conside a classical isolated system de aided by a set
of configurations $\{Y\}$. Then if the system is at energy E
 $\frac{P_{E}(q)}{Q} = \frac{1}{Q(q)} = \frac{5}{H(q), E}$ (1)$

where
$$\mathfrak{L}(E)$$
 is the number of configurations of energy E .
 $\overline{\delta_{a,b}}$ is the KRONECKER delta, such that $\overline{\delta_{a,b}} = 4$ if $a = 5$
 $k \overline{\delta_{a,b}} = 0$ otherwick.
Continuous system: If $\{1\}$ is a continuous space, $\overline{r}_{E}(Q)$ is
a probability density and $\mathfrak{L}(E)$ is the area of the energy
surface with energy E . (See residutions & Chopter S).
Commut: SL(E) is a normalization constant such that
 $\overline{Z} P_{E}(Q) = 1$
Hicrocanonical Entropy: The number of configurations
vary with E , typically experiminally, so that a better
way to measure $\mathfrak{L}(E)$ is Boltzmann microcanonical entropy
 $S_{m}(E) = k_{B} \ln \mathfrak{L}(E)$,
where $h_{B} = 1.380.643.10^{-13} \leq .K^{-1}$
Microcanonical temperature: The variations of 52.45
vary with E , this is quantified by temperature

 $\frac{1}{T_{m}} = \frac{\partial S_{m}}{\partial E}$

3)

Comment:
Q1: Is Eq. (1) simple? To ! As simple as it gets
Q2: Is Eq. (1) practical? No! Computing
$$\Sigma(E)$$
 is of then a
combinatorics challenge.
Q3: Is Eq. (1) useful? You No. We can engineer isolated
cystems (ultra high vacaum), but most systems and
mot isolated = account for energy fluctuations &
exchanges = bow?

Shaumon in formation theory [1941]: Take a distribution
$$p$$
 (F)
that measures the result of sampling a random variable
 $m \in [1, ..., N]$.
(R: How surprising is the fact of sampling a value m_0^2
Surprise function $S(p(m))$
as $S(1) = 0$; if $p(m) = 1 \implies mo$ surprise
b) S decreases as $p(m)$ increases
c) The surprise of two in dependent event should add ep:
 $S(p(m_1, m_2)) = S(p(m_1)) + S(p(m_2))$
 $= S(p(m_1) \cdot p(m_2))$
 $a + b + c \implies S(p(m)) = -k \ln(p)$ with $h > 0$ (Shauman)
Shauman entropy:
 $S_s = - \underset{G}{\cong} p(g) \ln p(g)$

<u>Cibbs entropy (1906)</u> Gibbs proposed that the themodynamic entropy be given by $S_{g} = -k_{B} \sum_{y} p(y) \ln |y|$

For the micro canonical where be

$$S_{G}(E) = -h_{B} \sum_{q} \frac{1}{-\chi(E)} S_{E(q),E} \int_{q} \int_{Q(E)} \frac{1}{\chi(E(q),E)} S_{G}(E) = h_{B} \sum_{q} \int_{Q(E)} \frac{1}{-\chi(E)} (-h \cdot \Sigma(E)) = h_{B} h \cdot \Sigma(E)$$

$$= -h_{B} \sum_{q} \int_{Q(E)} \frac{1}{-\chi(E)} (-h \cdot \Sigma(E)) = h_{B} h \cdot \Sigma(E)$$

$$S_{G}(E) = S_{B}(E)$$

$$= \delta \operatorname{Boltzmann}, \operatorname{Gibbs} d \operatorname{Shamme} \operatorname{coincide} in the nicro cannical arrandle
arrandle
$$\frac{1 \cdot 2 \cdot 3}{2} \int_{Q} \int_$$$$

Normalization fixes
$$\alpha_{0}^{\circ} \stackrel{d}{=} = e^{-i-\alpha}$$
 and

$$P(q_{i}) = \frac{1}{2} e^{-\beta E(q_{i})}$$
(2)
where $\mathbb{E} = \mathbb{Z} e^{-\beta E(q_{i})}$ is called the partition function.
This is the alternated conversal distribution. From this drivation,
we see that it is the fleast biased distribution cons-
traimed to $\langle E \rangle = E_{0}$. Also known as BOLTZHANN WEIGHT:
 \mathbb{Q} : How is β fixed?
 $\langle E \rangle = E_{0} \in \mathbb{Z} = \frac{1}{2} \stackrel{\sim}{\mathbb{Z}} E(q) e^{-\beta E(q)} = -\frac{1}{2} \partial_{\beta} \stackrel{\sim}{\mathbb{Z}} e^{-\beta E(q)}$
 $c=_{2}E_{0} = -\partial_{\beta} \ln \mathbb{Z}$
(amounts: \mathbb{O} this can be guaralized to other constraints (see
Pset 1)
 \mathbb{O} this is minimized an ignoriana does not difermine the laws
of mature = meed more reasons